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Abstract. A differential geometric interpretation of the axial anomaly is presented. This 
allows us to prove that for a two-dimensional Euclidean Schwinger model the axial anomaly 
is connected with the existence of meron configurations in the gauge sector of the theory. 
Arguments to support the same assertion in the case of a Euclidean four-dimensional theory 
are also given. Finally, several implications of the obtained results are presented. 

1. Introduction 

The purpose of this paper is to present and discuss a new perspective in the theory of the 
axial anomaly (for recent reviews of this topic and a large body of references see e.g. 
Crewther (1978a, b)). Firstly, we shall introduce a differential geometric, and at the 
same time extremal, interpretation of the axial anomaly condition, i.e. the divergence of 
the axial current is different from zero. (For a precise definition of these notions see 
§ 2.) Then, in § 3, we shall apply these ideas to investigate the axial anomaly within the 
context of the two-dimensional Euclidean Schwinger model (Schwinger 1962). We 
shall prove, using two types of arguments, that in this case the axial anomaly is 
connected with the existence of meron configurations in the gauge sector of the 
Schwinger model. 

In Q 4 we shall try to extend the obtained results to the four-dimensional Euclidean 
QCD. We shall present arguments that support, in this case too, the previously 
established relationship between the axial anomaly and the meron configurations. 

We acknowledge that t'Hooft (1976) has already suggested that the presence of 
self-dual (anti-self-dual) configurations in the gauge sector of a Euclidean QCD can be 
considered as a sufficient condition for the existence of the axial anomaly. Here we 
prove rigorously this assertion for a two-dimensional Euclidean Schwinger model and 
present plausibility arguments that suggest that the same holds in the four-dimensional 
case. The paper ends with a short discussion (0 5 ) .  

2. Anomalies and immersions 

Here we shall introduce some differential geometric results that will be instrumental in 
our subsequent derivations. First of all we shall define the notion of immersion of a 
Riemannian manifold into another one (Do Carmo 1976). Let M, N be two smooth 
(i.e. C") Riemannian manifolds and f : M + N  a smooth map from M into N. By 
definition f is an immersion if dfx : T ( M ) x  + T ( N ) f c x ,  is injective for all x EM. Here 
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T ( M ) ,  ( T ( N ) f ( x J  is the tangent space of M at the point x (tangent space of N at the 

If V (V) is the covariant differentiation on M ( N )  then the well known Gauss 

(1) 
for any couple X ,  Y of vector fields tangent to M. The quantity u(X, Y )  is the second 
differential form of M in N. Now, if 

point f(4). 

theorem (Do Carmo 1976) implies 

6,Y = V X Y  +u(X, Y )  

H =Tr  u(X, Y )  = 0 (2) 

the immersion f is called minimal. The trace H of the second differential form is called 
the mean curvature of the immersion f .  (There exists another more rigorous definition 
of the minimality of an immersion in terms of the cohomology classes of the immersed 
manifold (Kuiper 1970). For our purposes it suffices to use the definition (2).) 

The next step is to show the intimate connection between the divergence of a vector 
on a Riemannian manifold and the properties of the immersion(s) of that manifold. 
More precisely, if 5 is a vector field defined as 

6: M + T ( N )  (3) 
(with M, N Riemannian smooth manifolds) and tT is the projection of 6 on T ( M ) ,  then 
one can prove the following relation (Hoffman and Spruck 1974): 

(4) 

Here ( , ) denotes the inner product in T ( M )  induced from the inner product of M and 
H is the mean curvature of M (immersed in N ) .  In the case when f T  = 0, then (4) 
becomes 

divM 5 = divM cT - (5, H ) .  

divM( = -(& H )  (4') 

and this relation will be our starting point for a differential geometric interpretation of 
the axial anomaly. Via relation (4') we shall interpret the axial anomaly as expressing a 
non-minimal immersion of a certain manifold (into another one). 

To conclude this section we shall present one more observation. As we have just 
affirmed, we shall interpret the axial anomaly (Adler 1969, Bell er a1 1969, Bardeen 
1974) 

a,J: = cFF" ( 5 )  

as a particular realisation of the relation (4'). Here FFY is the strength tensor of the 
gauge field, FEy its dual ( F z y  = *$e,vPUFpol), while J :  is the non-symmetric gauge 
invariant axial current (which-as was strongly stressed by Crewther (1978a, b)-has 
nothing to do with the y5-transformation). The constant c in the relation (5) depends on 
the field model considered. (In this constant we have included the gauge trace T ( R )  
where T(R)Sab = Trra r6  and the matrices T define a gauge group representation R to 
which the massless fermions belong.) 

A necessary condition in order to perform the identification of (4') with ( 5 )  is to 
consider the manifold M (in (4')) as a spin manifold. Now, an oriented manifold M is a 
spin manifold if and only if wz(M)  = 0 (Milnor 1957). By wi(M)  E H i ( M ,  ZZ), i, 2 1, we 
understand the Stiefel-Whitney classes of M (Milnor 1957). (Notice that H'(M,  Z,)  
denotes the ith cohomology class-modulo &--of the manifold M.) In the two- 
dimensional case (i.e. surfaces in R 3 )  it suffices if the manifolds are oriented. For 
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instance, both S2 (the two-dimensional unit sphere) and T 2  = S' x S' (the two-dimen- 
sional torus) are oriented and therefore spin manifolds. Taking into account that the 
number of spin structures on an oriented surface is 4' (where g is the genus of the 
surface, i.e. the number of linearly independent differentials which can be defined on 
that surface) we find that S2 (which has genus g = 0) has only one spin structure, while 
T 2  (with g = 1) has four linearly independent spin structures. Generally, in order to 
calculate the number of (linearly independent) spin structures on a (spin) manifold, one 
has to determine the dimension of its first Stiefel-Whitney class w l ( M )  (Milnor 1957). 

We are now in possession of (nearly) all facts necessary to investigate the problem 
we are interested in. 

3. The two-dimensional Euclidean Schwinger model 

We shall consider now the axial anomaly within the context of the two-dimensional 
Euclidean Schwinger model (Schwinger 1962). (For analyses of the structure of this 
model see e.g. Lowenstein and Swieca (1971) and Kogut and Susskind (1975).) In this 
case the analogue of the relation ( 5 )  is 

aiJ: = cqFi ' (x ) ,  x E R 2 ,  i = 1,2 ,  (6) 

and, a priori, there is no reason to start our discussion within the context of the self-dual 
(anti-self-dual) configurations. However, as we have already mentioned in the previous 
sections, we shall rigorously prove that the RHS of the relation (6) is different from zero 
only when one considers meron configurations in the gauge sector of this field model. 
After these introductory remarks we shall proceed now to present our proofs. 

(a) Taking into consideration that the gauge group corresponding to the two- 
dimensional Euclidean Schwinger model is U(1) (=S ' )  one can say that the cor- 
responding gauge potential Ai(x) ,  x E R 2 ,  describes the map 

A ~ ( x ) :  R'+ s', i = 1,2 ,  (7) 
or more precisely 

Ai(x )  : M 2  + S' 

where M 2  is some two-dimensional spin manifold. Now, under the assumption that the 
maps (8) are described by regular homotopy classes, the obvious choice for M 2  is 
T 2  = S' x S'.  With such a choice, (8) becomes 

Ai(x)  : S' X S'+  S' (9) 
i.e. essentially 

Ai(x)  : S'+  S' 

and it is characterised by 7rl(S') 2 2. (Here 7ri(S2) is the ith homotopy group of the unit 
sphere S'.) 

In differential geometric terms the map (10) can be understood as the Gauss map 
attached to the immersion T 2  + S 3 .  If S is a surface immersed in R 3  or S3 (Do Carmo 
1976) the associated Gauss map is S + S2. For instance, both S2 and T 2  = S' x S' are 
minimally immersed in S3 and the associated Gauss maps are 

s2+s2 (11) 
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and 

T2 = S' x S' + S 2  (i.e. S' + S' c s2). 
Recently we showed (Tataru-Mihai 1978) that with these differential geometric notions 
it is possible to obtain a natural and rigorous interpretation of the classical solutions of 
the two-dimensional 0(3)-a-nonlinear model or of a SU(2) Euclidean Yang-Mills 
theory with axial symmetry (A,  = AIL(r, t ) ,  r = (Z?=, x ,  ) ). For example, in the case of 
a two-dimensional 0(3)-cr-nonlinear model the map (1 1) characterises the instanton 
solution, while the map (12) describes the two-dimensional merons. (Notice that the 
instantons correspond to the geodesic immersion (i.e. the associated second differential 
form is identically zero) S 2  + S 3 ,  while the merons are associated with the 'only' minimal 
immersion T2 + S 3 .  This difference in the type of the associated immersion explains the 
differences in the behaviour of the energies of these classical self-dual solutions.) 

In the case of a SU(2) Yang-Mills theory with axial symmetry the space-time can be 
organised as the right-half plane of the complex plane H2 = { z  = r + if, r > 0) or-via a 
Cayley transformation-as a unit disc D 1  = { w I w E @, 1 w 1 s 1). The corresponding 
instantons are associated with the immersion H2 + H3 (the three-dimensional real 
hyperbolic space), while the merons correspond to the automorphisms of the closed unit 
disc D'. 

Hence the differential geometric and homotopic characteristics of the two-dimen- 
sional Euclidean Schwinger model (i.e. the map (10)) are the same as those of a SU(2) 
Yang-Mills theory with axial symmetry (or those of a two-dimensional 0(3)-a- 
nonlinear model) when meron (i.e. toral) configurations are considered. 

It is known that Witten (1977) has shown that a SU(2) Yang-Mills theory with axial 
symmetry can be viewed as an Abelian Higgs theory in D'. Taking into account the 
relationship established above, this implies that the Schwinger model has to display a 
(dynamical) symmetry breaking. Such an effect has already been predicted through a 
different method by Lowenstein and Swieca (1971). 

We have now arrived at the crucial point of our proof. Using the fact that the T2 (i.e. 
the meron configuration) is not minimally immersed in R 3 ,  we affirm that the axial 
anomaly (i.e. the RHS of the relation ( 6 ) )  is determined by this non-minimal immersion. 
Glimm and Jaffe (1978) have investigated the meron solutions for a SU(2) Yang-Mills 
theory with axial symmetry and obtained for the strength tensor the expression 

2 1/2 

Therefore 

&J: - S ( r )  

(notice that equations (13) and (14) are valid for the topological number n = 1) .  
On the other hand if one observes that T2 can be written (in R 3 )  as 

(a  + b cos U )  cos u 

T 2  = (a + b sin U )  sin u 

b sin U 

O<b<a,  (U, ?I)€R'XR'  
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then some simple algebra shows that 

H , T ~  =s(r ) ,  ~ = ( u ~ + u ~ ) ' / ~  

i.e. a result consistent with equation (14). 
Let us summarise now these partial results. 
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king differential geometric and 
homotopic arguments we showed that the geometry of the two-dimensional Euclidean 
Schwinger model is intimately connected with that of a SU(2) Yang-Mills theory with 
axial symmetry when a specific self -dual configuration (merons) is considered. The 
existence of a toral configuration in the gauge sector of the Schwinger model leads to a 
non-trivial RHS for the relation (6), i.e. can explain the possible axial anomaly. 

(b) The second argument which will substantiate our assertion concerning a possi- 
ble connection between the axial anomaly and the meron configurations (within the 
context of the considered field model) consists in an application of the spin index 
theorem (Shanahan 1978) to S 2  and T 2 ,  respectively. (We acknowledge that the 
Atiyah-Singer index theorem has already been used in connection with the axial 
anomaly; see e.g. Crewther (1978a, b) for the relevant references. Here we shall 
present an application of the 'spin version' of the theorem.) 

Essentially, to apply the spin index theorem to a given manifold M, one has to 
consider the action of an appropriately defined discrete group r on M and on its spin 
covering. (The spin covering is the double covering of the tangent bundle of M.) The 
spin index of M (consistent with the action of r) is obtained by determining the fixed 
point under r on M and on its spin covering. 

We shall start with S 2 .  It is well known that the tangent bundle of S 2  is SO(3) and the 
double covering of SO(3) (i.e. the spin covering of S 2 )  is S 3  (SO(3) = S3/(*l)). The 
discrete group to be considered is Z 2 .  If one takes S 2  = C U CO (i.e. the compactification 
of the complex plane C) then the action of Z2 on S 2  can be written as gz = Az, g E 2 2 ,  

z E S 2 .  The constant A is the second root of unity, i.e. A = eiT. The fixed points of the 
&-action on S 2  are 0 and CO and, on S3,  they correspond to the point 1. The spin index 
theorem implies (see Shanahan (1978) for details) 

Index(g, S 2 )  = 0, gEZ2 .  (17) 

We shall consider now the action of the group Z2 on the two-torus T 2  = S' x S' .  The 
group Z2 acts on T 2  by g (0 ,4 )  = (-0, -+), g E Z2,  i.e. a 180" rotation of the torus about 
an axis of a coordinate system in R3.  The fixed points of this action are the corners of a 
square, e.g. (0, 0), (0, T), ( 7 , O )  and (7, 7 ) .  This can be easily understood if one realises 
that T 2  can be represented as a lattice T 2  = R 2 / Z 2 .  The spin covering of T 2  is 
S' x S' x S' and the spin index theorem leads to 

Index(g, T 2 )  = -2i. (18) 
Therefore, the axial anomaly leads to a non-trivial contribution only for T 2 ,  i.e. for 
meron configurations. (The index theorem furnishes information on the RHS of the 
relation (6) . )  

As is well known, one can connect the condition div J = 0 (J  is a vector current) with 
the vanishing of the exterior derivative of an appropriately defined differential form (in 
terms of which one can write the flux of the vector current). Analogously, one can relate 
div JI = 6(r), i = 1,2 ,  to the exterior derivative of a differential form associated with the 
solid angle. (In R" such an (n - 1)-differential form associated with the solid angle is 
w = XY=l(Jl/r"-')(dx,)-l A dx where J, = xl/r and r = (XY=I x ,  ) , dx = dxl A .  . . A 

dxl-l A dxlrl  A . . . A dx,. The solid angle is determined by js w = js (J/r"-') d S  with S a 

2 1/2 
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surface in R". Taking into account that x , / r 2  = a(ln r ) / a x i ,  the exterior derivative of w is 
dw =) S ( r ) . )  AlthoEgh our intepretation is merely a 'mechanistic' one, it is interesting to 
point out that many years ago De Rham (1955) analysed the differential forms 
associated with the solid angle and observed that they are odd relative to a symmetry 
operation which interchanges the points on the spin covering of the manifold on which 
these forms exist. 

4. The four-dimensional Euclidean QCD 

In this section we shall try to extend the arguments presented above to the case of a 
four-dimensional Euclidean field theory including fermions and a non-Abelian Yang- 
Mills sector. We have proved (Tataru-Mihai 1979) that the four-dimensional merons 
(for a Euclidean Yang-Mills theory) can be understood via immersion, 

s' x s3 + s5, (19) 

and the associated Gauss map is 

s' x s3 3 s4, 
i.e. essentially 

s3 + s3 c s4. (21) 
For the sake of completeness we write down also the instanton-type solution, i.e. the 
immersion 

S4'S5 (22) 

s4 + s4. (23) 

and its associated Gauss map 

In contradistinction to S4, the torus S' x S 3  is not minimally immersed in R5 and-via 
the results presented in 3 3-it is reasonable to assume that this fact underlines the 
existence of the axial anomaly in a four-dimensional theory. Another (more specula- 
tive) plausibility argilment to support this assumption is the following. In the two- 
dimensional case the axial anomaly is (with no doubt) associated with the existence of 
the merons (i.e. two-dimensional toral structures); on the other hand, as we have 
already pointed out, T 2  can accommodate four spin structures, i.e. it seems that the 
axial anomaly reveals the existence of a multiple spin structure on a given manifold. 
(There is some formal analogy with the anomaly observed by Gribov (1977) which 
reveals the existence of a multiple structure of the Yang-Mills vacuum.) In the 
four-dimensional case, both S4 and S' X S 3  are spin manifolds but S' X S 3  admits more 
spin structures than the sphere S4. Elsewhere I will try to present the calculation of the 
spin index for the torus S' x S 3  (which can be considered as a Hopf manifold (Hirze- 
bruch 1966)), i.e. a rigorous proof to support the assumption made in this section. 

5. Discussion 

To complete the analysis presented in the previous sections we shall discuss here some 
additional questions. 
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(i) The differential geometric interpretation of the axial anomaly proposed in this 
paper suggests also a natural way to avoid it. Conceiving an anomaly free model means 
to conceive a field theory in such a way that the meron configurations minimally 
immerse in the gauge group manifold. This observation could be used as one of the 
criteria to select field models of quarks and gluons. 

(ii) Our results imply that at least in the two-dimensional case the gauge invariant 
operator (we use Crewther's notation (Crewther 1978a, b)) 

X ( t )  = J & ( x )  d2x (24) 

is indeed connected with the topological charge, i.e. 

X ( t  = +CO) - X ( t  = -CO) = n (n  is topological charge). (25) 

(iii) A possible relation between the axial anomaly and the self-dual configurations 
has also been revealed by Kiskis (1977). 

(iv) After a first version of this paper had been completed we became aware of a 
paper due to Kastrup (1978) where an extrema1 discussion of the axial anomaly 
(although with another language) is also attempted. However, there is no mention of a 
possible connection of the axial anomaly with the self-dual'configurations in the gauge 
sector of a specific model. 
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